Quantum mechanics of many-electron systems

Author:

Abstract

The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting in of the theory with relativity ideas. These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It there fore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. Already before the arrival of quantum mechanics there existed a theory of atomic structure, based on Bohr’s ideas of quantised orbits, which was fairly successful in a wide field. To get agreement with experiment it was found necessary to introduce the spin of the electron, giving a doubling in the number of orbits of an electron in an atom. With the help of this spin and Pauli’s exclusion principle, a satisfactory theory of multiplet terms was obtained when one made the additional assumption that the electrons in an atom all set themselves with their spins parallel or antiparallel. If s denoted the magnitude of the resultant spin angular momentum, this s was combined vectorially with the resultant orbital angular momentum l to give a multiplet of multiplicity 2 s + 1. The fact that one had to make this additional assumption was, however, a serious disadvantage, as no theoretical reasons to support it could be given. It seemed to show that there were large forces coupling the spin vectors of the electrons in an atom, much larger forces than could be accounted for as due to the interaction of the magnetic moments of the electrons. The position was thus that there was empirical evidence in favour of these large forces, but that their theoretical nature was quite unknown.

Publisher

The Royal Society

Subject

General Medicine

Cited by 1490 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering;Geoscience Frontiers;2024-03

2. AFLOW-CCE for the thermodynamics of ionic materials;The Journal of Chemical Physics;2024-01-26

3. Variance extrapolation method for neural-network variational Monte Carlo;Machine Learning: Science and Technology;2024-01-25

4. Basis Sets for Relativistic Calculations;Comprehensive Computational Chemistry;2024

5. A Cyclotriveratrylene Solvent‐Dependent Chiral Switch;Chemistry – A European Journal;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3