On the role of ‘hot’ atoms in plasma-assisted ignition

Author:

Starikovskiy Andrey Yu1

Affiliation:

1. Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08544, USA

Abstract

This paper discusses the processes leading to the formation of ‘hot’ atoms and radicals possessing excessive translational energy in high-voltage NS pulse discharges. It is shown that the formation of such ‘hot’ atoms occurs efficiently both in the dissociation of molecules by direct electron impact, and in the collisional quenching of electronically excited states. Depending on the magnitude of the reduced electric field in the discharge, reactions of these ‘hot’ atoms increase the initial concentration of radicals in the discharge afterglow two to three times when compared with the values calculated without effects of translational non-equilibrium. The role of thermally non-equilibrium excitation has been demonstrated in the formation of the initial distribution of the chemically active components in the mixture and its influence on the kinetics of ignition initiation at low and high temperatures. It was found that in undiluted mixtures the presence of ‘hot’ atoms can significantly decrease an ignition threshold and accelerate a low-temperature oxidation.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3