Computational Fluid Dynamics Modeling of Low Temperature Ignition Processes From a Nanosecond Pulsed Discharge at Quiescent Conditions

Author:

Gururajan Vyaas1,Scarcelli Riccardo1,Biswas Sayan2,Ekoto Isaac3

Affiliation:

1. Argonne National Laboratory , Lemont, IL 60439

2. Mechanical Engineering, University of Minnesota Twin Cities , Minneapolis, MN 55455

3. Sandia National Laboratories , Livermore, CA 94551

Abstract

Abstract Recent interest in nonequilibrium plasma discharges as sources of ignition for the automotive industry has not yet been accompanied by the availability of dedicated models to perform this task in computational fluid dynamics (CFD) engine simulations. The need for a low-temperature plasma (LTP) ignition model has motivated much work in simulating these discharges from first principles. Most ignition models assume that an equilibrium plasma comprises the bulk of discharge kernels. LTP discharges, however, exhibit highly nonequilibrium behavior. In this work, a method to determine a consistent initialization of LTP discharge kernels for use in engine CFD codes like converge is proposed. The method utilizes first principles discharge simulations. Such an LTP kernel is introduced in a flammable mixture of air and fuel, and the subsequent plasma expansion and ignition simulation is carried out using a reacting flow solver with detailed chemistry. The proposed numerical approach is shown to produce results that agree with experimental observations regarding the ignitability of methane-air and ethylene-air mixtures by LTP discharges.

Funder

Vehicle Technologies Program

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference50 articles.

1. Laser Versus Conventional Ignition of Flames;Opt. Eng.,1994

2. What Limits Lean Operation in Spark Ignition Engines-Flame Initiation or Propagation?;SAE Trans.,1976

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3