Review: Can temperature be used to inform changes to flood extremes with global warming?

Author:

Wasko Conrad1ORCID

Affiliation:

1. Department of Infrastructure Engineering, The University of Melbourne, Parkville 3010, Australia

Abstract

As climate change alters flood risk, there is a need to project changes in flooding for water resource management, infrastructure design and planning. The use of observed temperature relationships for informing changes in hydrologic extremes takes many forms, from simple proportional change approaches to conditioning stochastic rainfall generation on observed temperatures. Although generally focused on understanding changes to precipitation, there is an implied transfer of information gained from precipitation-temperature sensitivities to flooding as extreme precipitation is often responsible for flooding. While reviews of precipitation-temperature sensitivities and the non-stationarity of flooding exist, little attention has been given to the intersection of these two topics. Models which use temperature as a covariate to assess the non-stationarity of extreme precipitation outperform both stationary models and those using a temporal trend as a covariate. But care must be taken when projecting changes in flooding on the basis on precipitation-temperature sensitivities, as antecedent conditions modify the runoff response. Although good agreement is found between peak flow-temperature sensitivities and historical trends across Australia, there remains little evaluation of flood projections using temperature sensitivities globally. Significant work needs to be done before the use of temperature as a covariate for flood projection can be adopted with confidence. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.

Funder

Australian Research Council

University of Melbourne

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference155 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3