Continuous wavelet transform and higher-order spectrum: combinatory potentialities in breath sound analysis and electroencephalogram-based pain characterization

Author:

Hadjileontiadis Leontios J.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, GreeceDepartment of Electrical and Computer Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE

Abstract

The combination of the continuous wavelet transform (CWT) with a higher-order spectrum (HOS) merges two worlds into one that conveys information regarding the non-stationarity, non-Gaussianity and nonlinearity of the systems and/or signals under examination. In the current work, the third-order spectrum (TOS), which is used to detect the nonlinearity and deviation from Gaussianity of two types of biomedical signals, that is, wheezes and electroencephalogram (EEG), is combined with the CWT to offer a time–scale representation of the examined signals. As a result, a CWT/TOS field is formed and a time axis is introduced, creating a time–bifrequency domain, which provides a new means for wheeze nonlinear analysis and dynamic EEG-based pain characterization. A detailed description and examples are provided and discussed to showcase the combinatory potential of CWT/TOS in the field of advanced signal processing. This article is part of the theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference41 articles.

1. Brockett PL Hinich M Wilson GR. 1989 Bispectral characterization of ocean acoustic time series: nonlinearity and non-Gaussianity. In Topics in non-Gaussian signal processing (eds EJ Wegman SC Schwartz JB Thomas) pp. 2–16. New York NY: Springer. (doi:10.1007/978-1-4613-8859-3_1)

2. The Illustrated Wavelet Transform Handbook

3. Nonlinear Phenomena and Intermittency in Plasma Turbulence

4. Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3