Detection of quadratic phase coupling by cross-bicoherence and spectral Granger causality in bifrequencies interactions

Author:

Abe Takeshi,Asai Yoshiyuki,Lintas Alessandra,Villa Alessandro E. P.

Abstract

AbstractQuadratic Phase Coupling (QPC) serves as an essential statistical instrument for evaluating nonlinear synchronization within multivariate time series data, especially in signal processing and neuroscience fields. This study explores the precision of QPC detection using numerical estimates derived from cross-bicoherence and bivariate Granger causality within a straightforward, yet noisy, instantaneous multiplier model. It further assesses the impact of accidental statistically significant bifrequency interactions, introducing new metrics such as the ratio of bispectral quadratic phase coupling and the ratio of bivariate Granger causality quadratic phase coupling. Ratios nearing 1 signify a high degree of accuracy in detecting QPC. The coupling strength between interacting channels is identified as a key element that introduces nonlinearities, influencing the signal-to-noise ratio in the output channel. The model is tested across 59 experimental conditions of simulated recordings, with each condition evaluated against six coupling strength values, covering a wide range of carrier frequencies to examine a broad spectrum of scenarios. The findings demonstrate that the bispectral method outperforms bivariate Granger causality, particularly in identifying specific QPC under conditions of very weak couplings and in the presence of noise. The detection of specific QPC is crucial for neuroscience applications aimed at better understanding the temporal and spatial coordination between different brain regions.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3