Performance database: capturing data for optimizing distributed streaming workflows

Author:

Liew Chee Sun12,Atkinson Malcolm P.1,Ostrowski Radosław3,Cole Murray1,van Hemert Jano I.14,Han Liangxiu5

Affiliation:

1. School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

2. Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

3. EPCC, University of Edinburgh, JCMB, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

4. Optos, Queensferry House, Carnegie Campus, Enterprise Way, Dunfermline KY11 8GR, UK

5. School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK

Abstract

The performance database (PDB) stores performance-related data gathered during workflow enactment. We argue that, by carefully understanding and manipulating these data, we can improve efficiency when enacting workflows. This paper describes the rationale behind the PDB, and proposes a systematic way to implement it. The prototype is built as part of the Advanced Data Mining and Integration Research for Europe project. We use workflows from real-world experiments to demonstrate the usage of PDB.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BioWorkbench: a high-performance framework for managing and analyzing bioinformatics experiments;PeerJ;2018-08-29

2. DISPEL Enactment;The DATA Bonanza;2013-04-09

3. Data-intensive architecture for scientific knowledge discovery;Distributed and Parallel Databases;2012-08-21

4. MTCProv: a practical provenance query framework for many-task scientific computing;Distributed and Parallel Databases;2012-08-17

5. Validation and mismatch repair of workflows through typed data streams;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2011-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3