Integrating distributed data sources with OGSA–DAI DQP and V iews

Author:

Dobrzelecki Bartosz1,Krause Amrey1,Hume Alastair C.1,Grant Alistair1,Antonioletti Mario1,Alemu Tilaye Y.1,Atkinson Malcolm2,Jackson Mike1,Theocharopoulos Elias2

Affiliation:

1. EPCC, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK

2. National e-Science Centre, University of Edinburgh, Edinburgh EH8 9AA, UK

Abstract

OGSA-DAI (Open Grid Services Architecture Data Access and Integration) is a framework for building distributed data access and integration systems. Until recently, it lacked the built-in functionality that would allow easy creation of federations of distributed data sources. The latest release of the OGSA-DAI framework introduced the OGSA-DAI DQP (Distributed Query Processing) resource. The new resource encapsulates a distributed query processor, that is able to orchestrate distributed data sources when answering declarative user queries. The query processor has many extensibility points, making it easy to customize. We have also introduced a new OGSA-DAI V iews resource that provides a flexible method for defining views over relational data. The interoperability of the two new resources, together with the flexibility of the OGSA-DAI framework, allows the building of highly customized data integration solutions.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference7 articles.

1. Fielding R. Gettys J. Mogul J. Frystyk H. Masinter L. Leach P.& Berners-Lee T.. 1999 Hypertext Transfer Protocol—HTTP/1.1. The Internet Society. See http://www.rfc-editor.org/rfc/rfc2616.txt.

2. The design and implementation of OGSA-DQP:a service-based distributed query processor;Lynden S.;Future Gen. Comput. Syst.,2009

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Background;SpringerBriefs in Applied Sciences and Technology;2020

2. Optimization of search queries with aggregation functions for the conditions of massive virtual integration of databases;Keldysh Institute Preprints;2016

3. Semantics and provenance for processing element composition in dispel workflows;Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science;2013-11-17

4. Problem Solving in Data-Intensive Knowledge Discovery;The DATA Bonanza;2013-04-09

5. The Data-Intensive Survival Guide;The DATA Bonanza;2013-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3