A framework for assessing frequency domain causality in physiological time series with instantaneous effects

Author:

Faes Luca1,Erla Silvia1,Porta Alberto2,Nollo Giandomenico13

Affiliation:

1. Department of Physics and BIOtech, University of Trento, 38060 Mattarello, Trento, Italy

2. Department of Biomedical Sciences for Health, Galeazzi Orthopaedic Institute, University of Milan, 20161 Milan, Italy

3. IRCS, PAT Fondazione Bruno Kessler, 38122 Trento, Italy

Abstract

We present an approach for the quantification of directional relations in multiple time series exhibiting significant zero-lag interactions. To overcome the limitations of the traditional multivariate autoregressive (MVAR) modelling of multiple series, we introduce an extended MVAR (eMVAR) framework allowing either exclusive consideration of time-lagged effects according to the classic notion of Granger causality, or consideration of combined instantaneous and lagged effects according to an extended causality definition. The spectral representation of the eMVAR model is exploited to derive novel frequency domain causality measures that generalize to the case of instantaneous effects the known directed coherence (DC) and partial DC measures. The new measures are illustrated in theoretical examples showing that they reduce to the known measures in the absence of instantaneous causality, and describe peculiar aspects of directional interaction among multiple series when instantaneous causality is non-negligible. Then, the issue of estimating eMVAR models from time-series data is faced, proposing two approaches for model identification and discussing problems related to the underlying model assumptions. Finally, applications of the framework on cardiovascular variability series and multichannel EEG recordings are presented, showing how it allows one to highlight patterns of frequency domain causality consistent with well-interpretable physiological interaction mechanisms.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3