Ionic basis of different synaptic potentials mediated by an identified dopamine-containing neuron in Planorbis

Author:

Abstract

A specified dopamine neuron in Planorbis corneus produces dopaminemediated e.p.s.ps, i.p.s.ps or biphasic, depolarizing-hyperpolarizing p.s.ps in different follower neurons. The excitatory potentials were of three types. Some follower neurons exhibited slow e.p.s.ps (ca. 1 s), and a long-lasting, slowly desensitizing, depolarizing response to iontophoresed dopamine. Others showed rapid (ca. 150 ms) e.p.s.ps, often of variable amplitude, and a rapid, quickly desensitizing, response to iontophoresed dopamine. The rapid e.p.s.ps were sometimes followed by the inhibitory response (biphasic potential). The e.p.s.ps were potentiated by hyperpolarization and reduced by depolarization, though they could not be inverted. The slow e.p.s.p. was shown to be associated with an increase in membrane conductance, but it has proved difficult to elucidate the ions involved. A third type of e.p.s.p. was produced by electrical transmission. The inhibitory potentials were generally reduced in amplitude by artificial hyperpolarization but could rarely be inverted. This is probably due in part to the presence of electrotonic coupling between these follower neurons. The i.p.s.ps were associated with an increase in conductance which appeared small when measured in the cell body. However, the i.p.s.ps produced considerable shunting of electrotonic transmission between coupled followers indicating a large increase in conductance at the synapse. I.p.s.ps were unaffected by Cl-free solution but they were greatly reduced, though rarely inverted, by increasing the external K concentration. They were blocked by intracellular tetraethylammonium, or cooling. The effects on corresponding responses to iontophoresed dopamine were in each case the same as on the i.p.s.ps. It is concluded that the i.p.s.ps mediated by the dopamine neuron are produced by an increase in permeability to K+. On a few occasions i.p.s.ps mediated by the dopamine neuron were potentiated by hyperpolarization. This appeared to be caused by a sharp increase in membrane resistance with hyperpolarization of these particular neurons. However, mediation by a mechanism of conductance decrease could not be completely excluded.

Publisher

The Royal Society

Subject

General Medicine

Reference21 articles.

1. EXPERIMENTAL ALTERATION OF COUPLING RESISTANCE AT AN ELECTROTONIC SYNAPSE

2. Inhibitory and excitatory effects of dopamine onAplysianeurones

3. A system o f electrically coupled sm all cells in th e buccal ganglia of th e pond snail Planorbis comeus. J . exp;Biol.,1972

4. Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neurone.

5. B erry M. S. & P e n tre a th V. W . 1975 Problem s associated w ith th e use of te traeth y lam m onium to te st for m onosynaptic connexions. J . exp. Biol. >2 797-803.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3