EXPERIMENTAL ALTERATION OF COUPLING RESISTANCE AT AN ELECTROTONIC SYNAPSE

Author:

Asada Y.1,Bennett M. V. L.1

Affiliation:

1. From the Department of Anatomy and the Rose Fitzgerald Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Yeshiva University, New York 10461.

Abstract

Adjacent segments of the septate axon of the crayfish Procambarus are electrotonically coupled by junction located in the septa between them (see Pappas et al. 1970. J. Cell Biol. 49:173). The coupling resistance at the septa was changed by several experimental treatments. Mechanical injury to an axon increased coupling resistance (more than 7-fold); no recovery of coupling resistance was observed, although the resting potential and resistance of the injured axon could return to near normal levels. Immersion in salines with Na propionate substituted for NaCl increased coupling resistance (mean: 6.1-fold). On return of the preparation to normal saline, coupling resistance recovered virtually completely. Immersion in low Ca++ solutions moderately increased coupling resistance (3.5-fold or less), but return to normal saline was followed by large increases in coupling resistance (5–100-fold). 60 nM Ca++ is near the maximum concentration that leads to increased coupling resistance on return to normal saline. Large increases in coupling resistance are associated with separation of junctional membranes (Pappas et al. 1970. Ibid.); calculations show that the separated membranes greatly increase in resistance. Increase in coupling resistance is probably an important response to injury. Mechanisms underlying changes reported here may be relevant to normal physiological processes of coupling and decoupling.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Gap Junction Structure and Chemical Regulation;2019

2. Implications of Electrical Synapse Plasticity in the Inferior Olive;Network Functions and Plasticity;2017

3. Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish;Journal of Structural Biology;2011-07

4. Chapter 6 Gap junctions;Developmental Biology;1998

5. Gap Junctions as Electrical Synapses;Neuroscience Intelligence Unit;1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3