Being Bayesian in the 2020s: opportunities and challenges in the practice of modern applied Bayesian statistics

Author:

Bon Joshua J.12,Bretherton Adam12,Buchhorn Katie12,Cramb Susanna13,Drovandi Christopher12ORCID,Hassan Conor12ORCID,Jenner Adrianne L.12,Mayfield Helen J.14,McGree James M.12,Mengersen Kerrie12ORCID,Price Aiden12,Salomone Robert15,Santos-Fernandez Edgar12,Vercelloni Julie12,Wang Xiaoyu12

Affiliation:

1. Centre for Data Science, Queensland University of Technology, Brisbane, Queensland, Australia

2. School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia

3. School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia

4. School of Public Health, The University of Queensland, Saint Lucia, Queensland, Australia

5. School of Computer Science, Queensland University of Technology, Brisbane, Queensland, Australia

Abstract

Building on a strong foundation of philosophy, theory, methods and computation over the past three decades, Bayesian approaches are now an integral part of the toolkit for most statisticians and data scientists. Whether they are dedicated Bayesians or opportunistic users, applied professionals can now reap many of the benefits afforded by the Bayesian paradigm. In this paper, we touch on six modern opportunities and challenges in applied Bayesian statistics: intelligent data collection, new data sources, federated analysis, inference for implicit models, model transfer and purposeful software products.This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference160 articles.

1. On the use and interpretation of certain test criteria for purposes of statistical inference: Part I;Neyman J;Biometrika,1928

2. Statistical Decision Functions

3. Bayesian Statistics

4. Optimal design via curve fitting of Monte Carlo experiments;Müller P;J. Am. Stat. Assoc.,1995

5. Simulation-based optimal design;Müller P;Handb. Stat.,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of WAIC and posterior predictive approaches for N-mixture models;Scientific Reports;2024-07-08

2. Assigning a Likelihood Function;Bayesian Compendium;2024

3. Application of Bayesian Optimization in Router Port Testing: An Improved Port Scanning Technique;2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS);2023-07-14

4. A special issue on Bayesian inference: challenges, perspectives and prospects;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3