Learning earth system models from observations: machine learning or data assimilation?

Author:

Geer A. J.1ORCID

Affiliation:

1. ECMWF, Shinfield Park, Reading, RG2 9AX, UK

Abstract

Recent progress in machine learning (ML) inspires the idea of improving (or learning) earth system models directly from the observations. Earth sciences already use data assimilation (DA), which underpins decades of progress in weather forecasting. DA and ML have many similarities: they are both inverse methods that can be united under a Bayesian (probabilistic) framework. ML could benefit from approaches used in DA, which has evolved to deal with real observations—these are uncertain, sparsely sampled, and only indirectly sensitive to the processes of interest. DA could also become more like ML and start learning improved models of the earth system, using parameter estimation, or by directly incorporating machine-learnable models. DA follows the Bayesian approach more exactly in terms of representing uncertainty, and in retaining existing physical knowledge, which helps to better constrain the learnt aspects of models. This article makes equivalences between DA and ML in the unifying framework of Bayesian networks. These help illustrate the equivalences between four-dimensional variational (4D-Var) DA and a recurrent neural network (RNN), for example. More broadly, Bayesian networks are graphical representations of the knowledge and processes embodied in earth system models, giving a framework for organising modelling components and knowledge, whether coming from physical equations or learnt from observations. Their full Bayesian solution is not computationally feasible but these networks can be solved with approximate methods already used in DA and ML, so they could provide a practical framework for the unification of the two. Development of all these approaches could address the grand challenge of making better use of observations to improve physical models of earth system processes. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference112 articles.

1. Krizhevsky A Sutskever I Hinton GE. 2012 Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems pp. 1097–1105.

2. Le QV. 2013 Building high-level features using large scale unsupervised learning. In 2013 IEEE international conference on acoustics speech and signal processing pp. 8595–8598. IEEE.

3. Sutskever I Vinyals O Le QV. 2014 Sequence to sequence learning with neural networks. In Advances in neural information processing systems pp. 3104–3112.

4. Wu Y et al. 2016 Google’s neural machine translation system: bridging the gap between human and machine translation. (http://arxiv.org/abs/1609.08144).

5. Mastering the game of Go with deep neural networks and tree search

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3