Regularization by denoising sub-sampled Newton method for spectral CT multi-material decomposition

Author:

Perelli Alessandro1ORCID,Andersen Martin S.1ORCID

Affiliation:

1. Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, Lyngby 2800, Denmark

Abstract

Spectral Computed Tomography (CT) is an emerging technology that enables us to estimate the concentration of basis materials within a scanned object by exploiting different photon energy spectra. In this work, we aim at efficiently solving a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT. In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function using a randomized second order method. By approximating the Newton step using a sketching of the Hessian of the likelihood function, it is possible to reduce the complexity while retaining the complex prior structure given by the data-driven regularizer. We exploit a non-uniform block sub-sampling of the Hessian with inexact but efficient conjugate gradient updates that require only Jacobian-vector products for denoising term. Finally, we show numerical and experimental results for spectral CT materials decomposition. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 1’.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the Bit Complexity of Communication for Distributed Convex Optimization;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. End-to-End Model-Based Deep Learning for Dual-Energy Computed Tomography Material Decomposition;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

3. Automatic pavement texture recognition using lightweight few-shot learning;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-07-17

4. Regularized Material Decomposition for K-edge Separation in Hyperspectral Computed Tomography;Lecture Notes in Computer Science;2023

5. Synergistic tomographic image reconstruction: part 1;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3