Snap buckling of bistable beams under combined mechanical and magnetic loading

Author:

Abbasi Arefeh1,Sano Tomohiko G.12,Yan Dong1ORCID,Reis Pedro M.1ORCID

Affiliation:

1. Flexible Structures Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

2. Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 2230061, Japan

Abstract

We investigate the mechanics of bistable, hard-magnetic, elastic beams, combining experiments, finite-element modelling (FEM) and a reduced-order theory. The beam is made of a hard magneto-rheological elastomer, comprising two segments with antiparallel magnetization along the centreline, and is set into a bistable curved configuration by imposing an end-to-end shortening. Reversible snapping is possible between these two stable states. First, we experimentally characterize the critical field strength for the onset of snapping, at different levels of end-to-end shortening. Second, we perform three-dimensional FEM simulations using the Riks method to analyse high-order deformation modes during snapping. Third, we develop a reduced-order centreline-based beam theory to rationalize the observed magneto-elastic response. The theory and simulations are validated against experiments, with an excellent quantitative agreement. Finally, we consider the case of combined magnetic loading and poking force, examining how the applied field affects the bistability and quantifying the maximum load-bearing capacity. Our work provides a set of predictive tools for the rational design of one-dimensional, bistable, magneto-elastic structural elements. This article is part of the theme issue ‘Probing and dynamics of shock sensitive shells’.

Funder

Swiss Government Excellence Scholarship

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3