Affiliation:
1. University of Maryland Department of Mechanical Engineering, , 3116 Glenn L. Martin Hall, College Park, MD 20742
Abstract
Abstract
Bistable shallow arches are ubiquitous in many engineering systems ranging from compliant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers. In all these scenarios, the bistable states of the arch and the sudden transitions between them via snap-through instability are harnessed. However, bistable arches have been traditionally studied and characterized by triggering snap-through instability using quasi-static forces. Here, we analytically examine the effect of oscillatory loads on bistable arches and investigate the dynamic behaviors ranging from intrawell motion to periodic and chaotic interwell motion. The linear and nonlinear dynamic responses of both elastically and plastically deformed shallow arches are presented. Introducing an energy potential criterion, we classify the structure’s behavior within the parameter space. This energy-based approach allows us to explore the parameter space for high-dimensional models of the arch by varying the force amplitude and excitation frequency. Bifurcation diagrams, Lyapunov exponents, and maximum critical energy plots are presented to characterize the dynamic response of the system. Our results reveal that unstable solutions admitted through higher modes govern the critical energy required for interwell motion. This study investigates the rich nonlinear dynamic behavior of the arch element and it introduces an energy potential criterion that can scale easily to classify motion of arrays of bistable arches for future developments of multistable mechanical metamaterials.
Funder
National Science Foundation
U.S. Department of Defense
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献