Thermodynamics of spin-1/2 fermions on coarse temporal lattices using automated algebra

Author:

Morrell K. J.1,Czejdo A. J.1,Carter N.2,Drut J. E.1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of North Carolina , Chapel Hill, NC 27599, USA

2. Department of Computer Science, University of North Carolina , Chapel Hill, NC 27599, USA

Abstract

Recent advances in automated algebra for dilute Fermi gases in the virial expansion, where coarse temporal lattices were found advantageous, motivate the study of more general computational schemes that could be applied to arbitrary densities, beyond the dilute limit where the virial expansion is physically reasonable. We propose here such an approach by developing what we call the Quantum Thermodynamics Computational Engine (QTCE). In QTCE, the imaginary-time direction is discretized and the interaction is accounted for via a quantum cumulant expansion, where the coefficients are expressed in terms of non-interacting expectation values. The aim of QTCE is to enable the systematic resolution of interaction effects at fixed temporal discretization, as in lattice Monte Carlo calculations, but here in an algebraic rather than numerical fashion. Using this approach, in combination with numerical integration techniques (both known and alternative ones proposed here), we explore the thermodynamics of spin-1/2 fermions across spatial dimensions, focusing on the unitary limit. We find that, remarkably, extremely coarse temporal lattices, when suitably renormalized using known results from the virial expansion, yield stable partial sums for QTCE’s cumulant expansion that are qualitatively and quantitatively correct in wide regions (when compared with known experimental results). This article is part of the theme issue ‘The liminal position of Nuclear Physics: from hadrons to neutron stars’.

Funder

National Science Foundation

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermodynamics of spin-1/2 fermions on coarse temporal lattices using automated algebra;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3