Affiliation:
1. GPM, CNRS-UMR 6634, University of Rouen Normandy, Saint Étienne Du Rouvray 76801, France
Abstract
The present work is devoted to the phenomenon of induced side branching stemming from the disruption of free dendrite growth. We postulate that the secondary branching instability can be triggered by the departure of the morphology of the dendrite from its steady state shape. Thence, the instability results from the thermodynamic trade-off between non monotonic variations of interface temperature, surface energy, kinetic anisotropy and interface velocity within the Gibbs–Thomson equation. For the purposes of illustration, the toy model of capillary anisotropy modulation is prospected both analytically and numerically by means of phase-field simulations. It is evidenced that side branching can befall both smooth and faceted dendrites, at a normal angle from the front tip which is specific to the nature of the capillary anisotropy shift applied.
This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献