Transitions in Taylor–Couette flow of concentrated non-colloidal suspensions

Author:

Kang Changwoo1ORCID,Mirbod Parisa2ORCID

Affiliation:

1. Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

2. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607, USA

Abstract

Taylor–Couette flow of concentrated non-colloidal suspensions with a rotating inner cylinder and a stationary outer one is numerically investigated. We consider suspensions of the bulk particle volume fraction ϕ b  = 0.2, 0.3 with the ratio of annular gap to the particle radius ε  = 60 confined in a cylindrical annulus of the radius ratio (i.e. ratio of inner and outer radii) η  = 0.877. Numerical simulations are performed by applying suspension-balance model and rheological constitutive laws. To observe flow patterns caused by suspended particles, the Reynolds number of the suspension, based on the bulk particle volume fraction and the rotating velocity of the inner cylinder, is varied up to 180. At high Reynolds number, modulated patterns undiscovered in the flow of a semi-dilute suspension emerge beyond a wavy vortex flow. Thus, a transition occurs from the circular Couette flow via ribbons, spiral vortex flow, wavy spiral vortex flow, wavy vortex flow and modulated wavy vortex flow for the concentrated suspensions. Moreover, friction and torque coefficients for suspensions are estimated. It turns out that suspended particles significantly enhance the torque on the inner cylinder while reducing friction coefficient and the pseudo-Nusselt number. In particular, the coefficients are reduced in the flow of more dense suspensions. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Army Research Office

National Research Foundation of Korea

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the instability of particle-laden flows in channels with porous walls;Physics of Fluids;2024-04-01

2. Hysteresis and ribbons in Taylor-Couette flow of a semidilute noncolloidal suspension;Physical Review Fluids;2024-02-28

3. Taylor–Couette and related flows on the centennial of Taylor’s seminalPhilosophical Transactionspaper: part 2;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3