Suspension Taylor–Couette flow: co-existence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals

Author:

Ramesh Prashanth,Bharadwaj S.,Alam MeheboobORCID

Abstract

Flow visualization and particle image velocimetry (PIV) measurements are used to unravel the pattern transition and velocity field in the Taylor–Couette flow (TCF) of neutrally buoyant non-Brownian spheres immersed in a Newtonian fluid. With increasing Reynolds number ($Re$) or the rotation rate of the inner cylinder, the bifurcation sequence in suspension TCF remains same as in its Newtonian counterpart (i.e. from the circular Couette flow (CCF) to stationary Taylor vortex flow (TVF) and then to travelling wavy Taylor vortices (WTV) with increasing $Re$) for small particle volume fractions ($\unicode[STIX]{x1D719}<0.05$). However, at $\unicode[STIX]{x1D719}\geqslant 0.05$, non-axisymmetric patterns such as (i) the spiral vortex flow (SVF) and (ii) two mixed or co-existing states of stationary (TVF, axisymmetric) and travelling (WTV or SVF, non-axisymmetric) waves, namely (iia) the ‘TVF$+$WTV’ and (iib) the ‘TVF$+$SVF’ states, are found, with the former as a primary bifurcation from CCF. While the SVF state appears both in the ramp-up and ramp-down experiments as in the work of Majji et al. (J. Fluid Mech., vol. 835, 2018, pp. 936–969), new co-existing patterns are found only during the ramp-up protocol. The secondary bifurcation TVF $\leftrightarrow$ WTV is found to be hysteretic or sub-critical for $\unicode[STIX]{x1D719}\geqslant 0.1$. In general, there is a reduction in the value of the critical Reynolds number, i.e. $Re_{c}(\unicode[STIX]{x1D719}\neq 0)<Re_{c}(\unicode[STIX]{x1D719}=0)$, for both primary and secondary transitions. The wave speeds of both travelling waves (WTV and SVF) are approximately half of the rotational velocity of the inner cylinder, with negligible dependence on $\unicode[STIX]{x1D719}$. The analysis of the radial–axial velocity field reveals that the Taylor vortices in a suspension are asymmetric and become increasingly anharmonic, with enhanced radial transport, with increasing particle loading. Instantaneous streamline patterns on the axial–radial plane confirm that the stationary Taylor vortices can indeed co-exist either with axially propagating spiral vortices or azimuthally propagating wavy Taylor vortices – their long-time stability is demonstrated. It is shown that the azimuthal velocity is considerably altered for $\unicode[STIX]{x1D719}\geqslant 0.05$, resembling shear-band type profiles, even in the CCF regime (i.e. at sub-critical Reynolds numbers) of suspension TCF; its possible role on the genesis of observed patterns as well as on the torque scaling is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3