Coherent structures of elastoinertial instabilities in Taylor–Couette flows

Author:

Boulafentis T.ORCID,Lacassagne T.ORCID,Cagney N.ORCID,Balabani S.ORCID

Abstract

We combine flow visualisation techniques and particle image velocimetry to experimentally investigate the higher-order transition to elastoinertial turbulence of Boger fluids ( $El = 0.11\unicode{x2013}0.34$ ) in Taylor–Couette flows. The observed route to turbulence is associated with the appearance of chaotic inflow jets, termed flame patterns, for increasing inertia, and stable structures of solitons, known as diwhirls, for decreasing inertia. We also report for the first time spatially and temporally resolved flow fields in the meridional plane for the three characteristic viscoelastic flow regimes (diwhirls, flame patterns and elastoinertial turbulence). We observe in all cases coherent structures of dynamically independent solitary vortex pairs. The stability of these coherent structures is jet-dominated and can be mainly ascribed to the high extension of the polymer chains in the inflow boundaries in the $r$ $z$ plane. Solitary pairs are self-sustained when created through random events and do not split; instead, they merge when moving sufficiently close and annihilate when hoop stresses are not sufficient to sustain them. The highly localised and random events result in highly fluctuating, chaotic flow states. We estimate the decay exponent of spatial power spectral density, illustrating a universal scaling of $-2.5$ for elastoinertial turbulence. Based on our observations and in an effort to unify and combine precedent theories with our results, we suggest a mechanism for the origins of elastoinertial instabilities, accounting for both the effect of elasticity on the vortex formation and the effect of increasing/decreasing inertia on the flow dynamics.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3