Quasi-variational inequality for the nonlinear indentation problem: a power-law hardening model
Author:
Affiliation:
1. Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstr. 36, 8010 Graz, Austria
2. Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
Abstract
Funder
H2020 European Research Council
Austrian Science Fund
Publisher
The Royal Society
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Link
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0362
Reference27 articles.
1. Love AEH. 1927 A treatise on the mathematical theory of elasticity. Cambridge, UK: Cambridge University Press.
2. Indentation Testing of Biological Materials
3. An Optimization Problem with Volume Constraint
4. Bensoussan A, Lions J-L. 1987 Impulse control and quasi variational inequalities. Canada: Wiley.
5. Kravchuk AS, Neittaanmäki PJ. 2010 Variational and quasi-variational inequalities in mechanics. Amsterdam, The Netherlands: Springer.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forward and inverse problems for creep models in viscoelasticity;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-15
2. Solvability analysis for the Boussinesq model of heat transfer under the nonlinear Robin boundary condition for the temperature;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-15
3. Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-15
4. Feasible domain of cycling operating conditions and model parameters for Holby–Morgan model of platinum catalyst degradation in PEMFC;International Journal of Hydrogen Energy;2024-01
5. Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion;Lobachevskii Journal of Mathematics;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3