The past, present and future of multi-scale modelling applied to wave–structure interaction in ocean engineering

Author:

Sriram V.12ORCID,Saincher Shaswat1ORCID,Yan S.3,Ma Q. W.3ORCID

Affiliation:

1. Department of Ocean Engineering, Indian Institute of Technology Madras , Chennai, India

2. Center for Maritime Experiments to Maritime Experience (ME2ME), Indian Institute of Technology Madras , Chennai, India

3. School of Science and Technology, City, University of London , London, UK

Abstract

Concepts and evolution of multi-scale modelling from the perspective of wave–structure interaction have been discussed. In this regard, both domain and functional decomposition approaches have come into being. In domain decomposition, the computational domain is spatially segregated to handle the far-field using potential flow models and the near field using Navier–Stokes equations. In functional decomposition, the velocity field is separated into irrotational and rotational parts to facilitate identification of the free surface. These two approaches have been implemented alongside partitioned or monolithic schemes for modelling the structure. The applicability of multi-scale modelling approaches has been established using both mesh-based and meshless schemes. Owing to said diversity in numerical techniques, massively collaborative research has emerged, wherein comparative numerical studies are being carried out to identify shortcomings of developed codes and establish best-practices in numerical modelling. Machine learning is also being applied to handle large-scale ocean engineering problems. This paper reports on the past, present and future research consolidating the contributions made over the past 20 years. Some of these past as well as future research contributions have and shall be actualized through funding from the Newton International Fellowship as the next generation of researchers inherits the present-day expertise in multi-scale modelling. This article is part of the theme issue ‘Celebrating the 15th anniversary of the Royal Society Newton International Fellowship’.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3