COMPARATIVE ASSESSMENT OF NON-CONSERVATIVE AND CONSERVATIVE RANS FORMULATIONS FOR COASTAL APPLICATIONS INVOLVING BREAKING WAVES

Author:

Saincher Shaswat,Sriram V.

Abstract

Two-phase Reynolds Averaged Navier-Stokes (RANS) simulations of breaking waves are susceptible to an unphysical thickening of the plunging crest. This is often times incorrectly attributed to deficiencies in the interface capturing scheme although, in reality, the issue stems from the nature of density treatment in momentum advection. If the density is considered face-centered in the advection term, the resulting formulation is conservative whilst if the density is modeled as a cell-centered quantity, the resulting formulation is non-conservative. Despite both approaches having been extensively applied to wave-breaking simulations in the literature, there is no study comparing both formulations for the same breaking scenario. In the present paper, we extensively compare both formulations for several depth- and steepness-induced breaking problems simulated using our in-house solver: IITM-RANS3D. Through these simulations, our work successfully addresses the following research questions: (a) how and why density treatment affects the physics of overturning and subsequently the plunging jet’s topology and (b) what are the implications of choosing a particular formulation for simulating a violent wave-structure interaction scenario?

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The past, present and future of multi-scale modelling applied to wave–structure interaction in ocean engineering;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3