Bayesian clustering of multiple zero-inflated outcomes

Author:

Franzolini Beatrice1,Cremaschi Andrea1,van den Boom Willem2ORCID,De Iorio Maria123ORCID

Affiliation:

1. Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore

2. Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore

3. Department of Statistical Science, University College London, London, UK

Abstract

Several applications involving counts present a large proportion of zeros (excess-of-zeros data). A popular model for such data is the hurdle model, which explicitly models the probability of a zero count, while assuming a sampling distribution on the positive integers. We consider data from multiple count processes. In this context, it is of interest to study the patterns of counts and cluster the subjects accordingly. We introduce a novel Bayesian approach to cluster multiple, possibly related, zero-inflated processes. We propose a joint model for zero-inflated counts, specifying a hurdle model for each process with a shifted Negative Binomial sampling distribution. Conditionally on the model parameters, the different processes are assumed independent, leading to a substantial reduction in the number of parameters as compared with traditional multivariate approaches. The subject-specific probabilities of zero-inflation and the parameters of the sampling distribution are flexibly modelled via an enriched finite mixture with random number of components. This induces a two-level clustering of the subjects based on the zero/non-zero patterns (outer clustering) and on the sampling distribution (inner clustering). Posterior inference is performed through tailored Markov chain Monte Carlo schemes. We demonstrate the proposed approach on an application involving the use of the messaging service WhatsApp. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Funder

NUS Centre for Trusted Internet and Community

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonparametric priors with full-range borrowing of information;Biometrika;2023-10-19

2. Entropy regularization in probabilistic clustering;Statistical Methods & Applications;2023-08-07

3. A special issue on Bayesian inference: challenges, perspectives and prospects;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3