Nonparametric priors with full-range borrowing of information

Author:

Ascolani F1,Franzolini B1,Lijoi A1,Prünster I1

Affiliation:

1. Bocconi Institute for Data Science and Analytics, Bocconi University , Via Roentgen 1 , 20136 Milano, Italy

Abstract

Summary Modelling of the dependence structure across heterogeneous data is crucial for Bayesian inference, since it directly impacts the borrowing of information. Despite extensive advances over the past two decades, most available methods only allow for nonnegative correlations. We derive a new class of dependent nonparametric priors that can induce correlations of any sign, thus introducing a new and more flexible idea of borrowing of information. This is achieved thanks to a novel concept, which we term hyper-tie, and represents a direct and simple measure of dependence. We investigate prior and posterior distributional properties of the model and develop algorithms to perform posterior inference. Illustrative examples on simulated and real data show that the proposed method outperforms alternatives in terms of prediction and clustering.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference51 articles.

1. Modeling with normalized random measure mixture models;Barrios;Statist. Sci.,2013

2. The business cycle and the correlation between stocks and commodities;Bhardwaj;J. Investment Consult.,2013

3. Effects of school and classroom characteristics on pupil progress in language and arithmetic;Brandsma;Int. J. Educ. Res,1989

4. John W. Tukey: His life and professional contributions;Brillinger;Ann. Statist.,2002

5. Latent nested nonparametric priors;Camerlenghi;Bayesian Anal,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3