Congruence, fossils and the evolutionary tree of rodents and lagomorphs

Author:

Asher Robert J.1ORCID,Smith Martin R.2ORCID,Rankin Aime1,Emry Robert J.3

Affiliation:

1. Department of Zoology, University of Cambridge, Cambridge, UK

2. Department of Earth Sciences, University of Durham, Durham, UK

3. Department of Paleobiology, Smithsonian Institution, Washington, DC, USA

Abstract

Given an evolutionary process, we expect distinct categories of heritable data, sampled in ever larger amounts, to converge on a single tree of historical relationships. We tested this assertion by undertaking phylogenetic analyses of a new morphology-DNA dataset for mammals, focusing on Glires and including the oldest known skeletons of geomyoid and Ischyromys rodents. Our results support geomyoids in the mouse-related clade (Myomorpha) and a ricochetal locomotor pattern for the common ancestor of geomyoid rodents. They also support Ischyromys in the squirrel-related clade (Sciuromorpha) and the evolution of sciurids and Aplodontia from extinct, ‘protrogomorph’-grade rodents. Moreover, ever larger samples of characters from our dataset increased congruence with an independent, well-corroborated tree. Addition of morphology from fossils increased congruence to a greater extent than addition of morphology from extant taxa, consistent with fossils' temporal proximity to the common ancestors of living species, reflecting the historical, phylogenetic signal present in our data, particularly in morphological characters from fossils. Our results support the widely held but poorly tested intuition that fossils resemble the common ancestors shared by living species, and that fossilizable hard tissues (i.e. bones and teeth) help to reconstruct the evolutionary tree of life.

Funder

University of Cambridge

Smithsonian Institution

University of Durham

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3