Microwave-assisted synthesis of high thermal stability and colourless polyimides containing pyridine

Author:

Cheng Kai1,Hu Jie-pin1,Wu Yan-cheng1,Shi Chu-qi1,Chen Zhi-geng1,Liu Shu-mei1,Yuan Yan-chao1,Mo Yue-qi1ORCID,Zhao Jian-qing1

Affiliation:

1. School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China

Abstract

A novel aromatic diamine containing pyridyl side group, 4-pyridine-4,4-bis(3,5-dimethyl-5-aminophenyl)methane (PyDPM), was successfully synthesized via electrophilic substitution reaction. The polyimides (PIs) containing pyridine were obtained via the microwave-assisted one-step polycondensation of the PyDPM with pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-diphenylether tetracarboxylic dianhydride (ODPA) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Contrarily to the reported similar PIs, these PIs exhibit much higher thermal stability or heat resistance, i.e. high glass transition temperatures ( T g s) in the range of 358–473°C, and the decomposition temperatures at 5% weight loss over 476°C under nitrogen. They can afford flexible and strong films with tensile strength of 82.1–93.3 MPa, elongation at break of 3.7%–15.2%, and Young's modulus of 3.3–3.8 GPa. Furthermore, The PI films exhibit good optical transparency with the cut-off wavelength at 313–366 nm and transmittance higher than 73% at 450 nm. The excellent thermal and optical transmittance can be attributed to synthesis method and the introduction of pyridine rings and ortho-methyl groups. The inherent viscosities of PIs via one-step method were found to be 0.58–1.12 dl g −1 in DMAc, much higher than those via two-step method. These results indicate these PIs could be potential candidates for optical substrates of organic light emitting diodes (OLEDs).

Funder

National Natural Science Foundation of China

Student Research Project of South China University of Technology

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3