Affiliation:
1. Shanghai Shenglan Petrochemical Engineering Technology Co. Ltd, Shanghai 201200, People's Republic of China
2. Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
Abstract
Because of the preferential butanol selectivity of some ionic liquids (ILs), an increasing amount of research has appeared regarding their application in butanol separation. In this research, two ionic liquids, namely, 1-ethyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EVIM][Tf
2
N], IL1) and
N
-octyl-pyridinium bis[(trifluoromethyl)sulfonyl]imide ([OMPY][Tf
2
N], IL2), were applied to modify a mesoporous molecular sieve MCM-41. The IL-modified MCM-41 samples were characterized by XPS, BET, XRD, SEM and TEM. The ionic liquid-modified MCM-41 was incorporated into the polymer PEBA to prepare mixed matrix membranes to study the influences of the filling of IL-modified MCM-41 and operating conditions on the performance of the mixed matrix membrane for butanol pervaporation. The results indicated that the pervaporation performance of the PEBA membrane was enhanced by the incorporation of IL-modified MCM-41. When the temperature of the feeding liquid was 35°C and the mass fraction of butanol was 2.5 wt%, the 5% MCM-41-IL2-PEBA membrane showed a permeation flux of 421.7 g m
−2
h
−1
and a separation factor of 25.4. The permeation flux and the separation factor of the membrane increased as the temperature of the feeding liquid increased. The results of the long-period experiment suggested that the 5% MCM-41-IL2-PEBA membrane exhibited high stability within 100 h of operation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献