Ionic liquid-modified MCM-41-polymer mixed matrix membrane for butanol pervaporation

Author:

Li Yifang1,Yan Dandan2,Wu Yanhui2ORCID

Affiliation:

1. Shanghai Shenglan Petrochemical Engineering Technology Co. Ltd, Shanghai 201200, People's Republic of China

2. Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China

Abstract

Because of the preferential butanol selectivity of some ionic liquids (ILs), an increasing amount of research has appeared regarding their application in butanol separation. In this research, two ionic liquids, namely, 1-ethyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EVIM][Tf 2 N], IL1) and N -octyl-pyridinium bis[(trifluoromethyl)sulfonyl]imide ([OMPY][Tf 2 N], IL2), were applied to modify a mesoporous molecular sieve MCM-41. The IL-modified MCM-41 samples were characterized by XPS, BET, XRD, SEM and TEM. The ionic liquid-modified MCM-41 was incorporated into the polymer PEBA to prepare mixed matrix membranes to study the influences of the filling of IL-modified MCM-41 and operating conditions on the performance of the mixed matrix membrane for butanol pervaporation. The results indicated that the pervaporation performance of the PEBA membrane was enhanced by the incorporation of IL-modified MCM-41. When the temperature of the feeding liquid was 35°C and the mass fraction of butanol was 2.5 wt%, the 5% MCM-41-IL2-PEBA membrane showed a permeation flux of 421.7 g m −2 h −1 and a separation factor of 25.4. The permeation flux and the separation factor of the membrane increased as the temperature of the feeding liquid increased. The results of the long-period experiment suggested that the 5% MCM-41-IL2-PEBA membrane exhibited high stability within 100 h of operation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3