Do changes in body mass alter white blood cell profiles and immune function in Australian cane toads ( Rhinella marina )?

Author:

Brown Gregory P.1ORCID,Hudson Cameron M.23ORCID,Shine Richard1ORCID

Affiliation:

1. School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia

2. Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution, and Biochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland

3. Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Zürich, Switzerland

Abstract

Variation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study, we investigated links between changes in body mass of captive cane toads ( Rhinella marina ), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a three-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, owing to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential recovery ability from infections by two blood parasite genera in males of a Mediterranean lacertid lizard after an experimental translocation;Journal of Experimental Zoology Part A: Ecological and Integrative Physiology;2023-07-11

2. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-06-12

3. Do changes in body mass alter white blood cell profiles and immune function in Australian cane toads ( Rhinella marina )?;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3