Spatial food webs in the Barents Sea: atlantification and the reorganization of the trophic structure

Author:

Jordán Ferenc12ORCID,Capelli Greta13ORCID,Primicerio Raul3,Hidas András245,Fábián Virág2,Patonai Katalin6,Bodini Antonio1ORCID

Affiliation:

1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma , Parma 43124, Italy

2. KeyNode Research Ltd , Budapest, Hungary

3. Faculty of Bioscience, Fisheries and Economy, UiT, The Arctic University of Norway , Tromso N-9037, Norway

4. Institute of Aquatic Ecology, Centre for Ecological Research , Budapest 1113, Hungary

5. Doctoral School of Environmental Sciences, Eötvös Loránd University , Budapest 1053, Hungary

6. Department of Biological Sciences, Université de Montréal , Montréal H2V 0B3, Canada

Abstract

Climate change affects ecosystems at several levels: by altering the spatial distribution of individual species, by locally rewiring interspecific interactions, and by reorganizing trophic networks at larger scales. The dynamics of marine food webs are becoming more and more sensitive to spatial processes and connections in the seascape. As a case study, we study the atlantification of the Barents Sea: we compare spatio-temporal subsystems at three levels: the identity of key organisms, critically important interactions and the entire food web. Network analysis offers quantitative measurements, including centrality indices, trophic similarity indices, a topological measure of interaction asymmetry and network-level measures. We found that atlantification alters the identity of key species (boreal demersals becoming hubs), results in strongly asymmetric interactions (dominated by haddock), changes the dominant regulation regime (from bottom-up to wasp-waist control) and makes the food web less modular. Since the results of food web analysis may be quite sensitive to network construction, the aggregation of food web data was explicitly studied to increase the robustness of food web analysis. We found that an alternative, mathematical aggregation algorithm better preserves some network properties (e.g. density) of the original, unaggregated network than the biologically inspired aggregation into functional groups. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.

Funder

European Union

HORIZON EUROPE Climate, Energy and Mobility

Publisher

The Royal Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial food webs in the Barents Sea: atlantification and the reorganization of the trophic structure;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-07-22

2. Connected interactions: enriching food web research by spatial and social interactions;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3