Affiliation:
1. Department of Biomedical Engineering, Wolfson Centre, University of Strathclyde, 106 Rottenrow, Glasgow G1 1XQ, UK
2. Department of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
Abstract
The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals.
This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’.
Funder
Engineering and Physical Sciences Research Council
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献