Reichardt's dye and its reactions with the alkylating agents 4-chloro-1-butanol, ethyl methanesulfonate, 1-bromobutane and Fast Red B - a potentially useful reagent for the detection of genotoxic impurities in pharmaceuticals

Author:

Corrigan Damion K1,Whitcombe Michael J1,McCrossen Sean2,Piletsky Sergey1

Affiliation:

1. Cranfield Health, Cranfield University, UK

2. GlaxoSmithKline, Old Powder Mills, Tonbridge, Kent, UK

Abstract

Abstract Objectives Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. Methods The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Key findings Changes in absorption were observed using low levels of alkylating agent (5–10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Conclusions Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3