Bridging adaptive management and reinforcement learning for more robust decisions

Author:

Chapman Melissa1ORCID,Xu Lily2,Lapeyrolerie Marcus1,Boettiger Carl1

Affiliation:

1. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA

2. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract

From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning (RL), a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where RL holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable and discuss technical and social issues that arise when applying RL to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises and perils of experience-based decision-making. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3