Comparing management strategies for conserving communities of climate-threatened species with a stochastic metacommunity model

Author:

Backus Gregory A.1ORCID,Huang Yansong2,Baskett Marissa L.1

Affiliation:

1. Environmental Science and Policy, University of California, Davis, CA, USA

2. Spanish Institute of Oceanography, Oceanographic Center of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain

Abstract

Many species are shifting their ranges to keep pace with climate change, but habitat fragmentation and limited dispersal could impede these range shifts. In the case of climate-vulnerable foundation species such as tropical reef corals and temperate forest trees, such limitations might put entire communities at risk of extinction. Restoring connectivity through corridors, stepping-stones or enhanced quality of existing patches could prevent the extinction of several species, but dispersal-limited species might not benefit if other species block their dispersal. Alternatively, managers might relocate vulnerable species between habitats through assisted migration, but this is generally a species-by-species approach. To evaluate the relative efficacy of these strategies, we simulated the climate-tracking of species in randomized competitive metacommunities with alternative management interventions. We found that corridors and assisted migration were the most effective strategies at reducing extinction. Assisted migration was especially effective at reducing the extinction likelihood for short-dispersing species, but it often required moving several species repeatedly. Assisted migration was more effective at reducing extinction in environments with higher stochasticity, and corridors were more effective at reducing extinction in environments with lower stochasticity. We discuss the application of these approaches to an array of systems ranging from tropical corals to temperate forests. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3