Scalable Bayesian phylogenetics

Author:

Fisher Alexander A.1ORCID,Hassler Gabriel W.2,Ji Xiang3,Baele Guy4,Suchard Marc A.256,Lemey Philippe4

Affiliation:

1. Department of Statistical Science, Duke University, Durham, NC 27710, USA

2. Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA

3. Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA

4. Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium

5. Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA

6. Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA

Abstract

Recent advances in Bayesian phylogenetics offer substantial computational savings to accommodate increased genomic sampling that challenges traditional inference methods. In this review, we begin with a brief summary of the Bayesian phylogenetic framework, and then conceptualize a variety of methods to improve posterior approximations via Markov chain Monte Carlo (MCMC) sampling. Specifically, we discuss methods to improve the speed of likelihood calculations, reduce MCMC burn-in, and generate better MCMC proposals. We apply several of these techniques to study the evolution of HIV virulence along a 1536-tip phylogeny and estimate the internal node heights of a 1000-tip SARS-CoV-2 phylogenetic tree in order to illustrate the speed-up of such analyses using current state-of-the-art approaches. We conclude our review with a discussion of promising alternatives to MCMC that approximate the phylogenetic posterior. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.

Funder

National Institute of Health

KU Leuven

Wellcome Trust

Fonds Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3