Enhanced durability of round bamboo treated with copper naphthenate under heat-cold impregnation

Author:

Jiang Jun12ORCID,Han Shuaibo1,Ren Xin1ORCID,Wang Hui1,Yu Hongwei1ORCID,Sun Fangli1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China

2. Huzhou Inspection and Testing Center, Huzhou 313009, People's Republic of China

Abstract

Round bamboo has aroused much interest in construction for its mechanical properties, but poor biological durability seriously restricts its application. In order to develop a suitable and effective preservative treatment method for round bamboo, copper naphthenate (CuN) was adopted and impregnated into round bamboo using heat-cold procedure. The distribution and retention of copper naphthenate in round bamboo were studied, and the biological durability represented by the mould and decay resistance were investigated. The results showed that the retention and fixation of copper reached 0.39 kg⋅m −3 and 85.3%, respectively. Scanning electron microscopy–energy dispersive X-ray spectrometry further disclosed an increasing trend in the composition of CuN from the end inward. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses later revealed that CuN could be fixed on bamboo in the form of hydrogen bond or complex reaction. Statistical analysis showed that the increasing concentration of CuN from 0.3% to 0.5% and 0.8% (calculated as Cu 2+ content) has significant contribution against Trametes versicolor and Gloeophyllum trabeum in comparison with the untreated bamboo. Meanwhile, when the concentration of treating solution increased to 0.8 wt%, the resisting efficacy for Aspergillus niger , Penicillium citrinum and Trichoderma viride soared as high as 85.9%, 94.8% and 70.3%, respectively.

Funder

Special Support Fund of Huzhou Nantaihu Plan

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3