Macrophage polarization as a potential therapeutic target for atherosclerosis: a dynamic stochastic modelling study

Author:

Liu Mengchen1,Cai Yan1,Pan Jichao1,Peter Karlheinz2,Li Zhiyong13ORCID

Affiliation:

1. School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China

2. Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, VIC 8008, Australia

3. School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

Abstract

We proposed a dynamic stochastic mathematical model to evaluate the role of macrophage polarization in plaque development. The dynamic process of macrophages from proliferation to death was simulated under different lipid microenvironments. The probability of macrophage phenotypic switching was described using a Bernoulli distribution where the stochastic variable was determined by the local lipid level. Moreover, the interactions between macrophages and microenvironmental factors vary with macrophage phenotype. We investigated the distribution of key microenvironmental factors, the dynamics of macrophage polarization and its influence on foam cell formation. M1 macrophages were found to predominate in advanced plaque corresponding to the exacerbated inflammation observed in mice experiments. The imbalance between the deposition of oxidized low-density lipoprotein and phagocytic effects of macrophages governed the formation of foam cells. Furthermore, we simulated targeted therapies by either directly inhibiting the polarization probability to M1 macrophages or indirectly regulating macrophage polarization due to high-density lipoprotein levels. Comparison of simulation results with experimental findings in both therapies indicated that the intervention and regulation of macrophage polarization could influence plaque microenvironment and subsequently induce plaque regression, especially in the early stage. The proposed modelling system can facilitate the evaluation of novel therapies targeting macrophage polarization.

Funder

Australian Research Council

National Nature Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3