The Role of Macrophage Dynamics in Atherosclerosis Analyzed Using a Petri Net-Based Model

Author:

Rybarczyk Agnieszka123ORCID,Formanowicz Dorota4ORCID,Formanowicz Piotr1ORCID

Affiliation:

1. Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland

2. Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland

3. Faculty of Electrical Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland

4. Poznan University of Medical Sciences, Department of Medical Chemistry and Laboratory Medicine, 60-806 Poznan, Poland

Abstract

Atherosclerosis, a chronic inflammatory and oxidative stress-mediated disease impacting the arterial system, stands as a primary cause of morbidity and mortality worldwide. The complexity of this disease, driven by numerous factors, requires a thorough investigation of its underlying mechanisms. In our study, we explore the complex interplay between cholesterol homeostasis, macrophage dynamics, and atherosclerosis development using a Petri net-based model anchored in credible, peer-reviewed biological and medical research. Our findings underscore the significant role of macrophage colony-stimulating factor (M-CSF) inhibition in reducing atherosclerotic plaque formation by modulating inflammatory responses and lipid accumulation. Furthermore, our model highlights the therapeutic potential of targeting the C-X-C motif ligand 12 (CXCL12)/ C-X-C motif chemokine receptor type 4 (CXCR4) pathway to hinder hematopoietic stem and progenitor cells’ (HSPCs’) mobilization and plaque development. Based on the results obtained, which are in agreement with current studies, additional strategies are also proposed, such as decreasing M1 macrophage polarization for therapeutic gains, opening the door to future research and novel treatment approaches.

Funder

National Science Centre

Poznan University of Technology

Poznan University of Medical Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3