Affiliation:
1. Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
Abstract
Computer-aided methods can be used to screen potential candidate targets and to reduce the time and cost of drug development. In most of these methods, synthetic lethality is used as a therapeutic criterion to identify drug targets. However, these methods do not consider the side effects during the identification stage. This study developed a fuzzy multi-objective optimization for identifying anti-cancer targets that not only evaluated cancer cell mortality, but also minimized side effects due to treatment. We identified potential anti-cancer enzymes and antimetabolites for the treatment of head and neck cancer (HNC). The identified one- and two-target enzymes were primarily involved in six major pathways, namely, purine and pyrimidine metabolism and the pentose phosphate pathway. Most of the identified targets can be regulated by approved drugs; thus, these drugs are potential candidates for drug repurposing as a treatment for HNC. Furthermore, we identified antimetabolites involved in pathways similar to those identified using a gene-centric approach. Moreover,
HMGCR
knockdown could not block the growth of HNC cells. However, the two-target combinations of (
UMPS
,
HMGCR
) and (
CAD
,
HMGCR
) could achieve cell mortality and improve metabolic deviation grades over 22% without reducing the cell viability grade.
Funder
Ministry of Science and Technology Council, Taiwan
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献