Compressor performance modelling method based on support vector machine nonlinear regression algorithm

Author:

Ying Yulong1ORCID,Xu Siyu1ORCID,Li Jingchao2ORCID,Zhang Bin3

Affiliation:

1. School of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China

2. School of Electronic and Information, Shanghai Dianji University, Shanghai, People's Republic of China

3. Department of Mechanical Engineering, Kanagawa University, Yokohama, Japan

Abstract

To overcome the difficulty of having only part of compressor characteristic maps including on-design operating point, and accurately calculate compressor thermodynamic performance under variable working conditions, this paper proposes a novel compressor performance modelling method based on support vector machine nonlinear regression algorithm. It is compared with the other three neural network algorithms (i.e. back propagation (BP), radial basis function (RBF) and Elman neural networks) from the perspective of interpolation and extrapolation accuracy as well as calculation time, to prove the validity of the proposed method. Application analyses indicate that the proposed method has better interpolation and extrapolation performance than the other three neural networks. In terms of flow characteristic map representation, the root mean square error (RMSE) of the extrapolation performance at higher and lower speed operating area by the proposed method is 0.89% and 2.57%, respectively. And the total RMSE by the proposed method is 2.72%, which is more accurate by 47% than the Elman algorithm. For efficiency characteristic map representation, the RMSE of the extrapolation performance at higher and lower speed operating area by the proposed method is 2.85% and 1.22%, respectively. And the total RMSE by the proposed method is 1.81%, which is more accurate by 35% than the BP algorithm. Moreover, the proposed method has better real-time performance compared with the other three neural network algorithms.

Funder

National Natural Science Foundation of China

the State Key Lab of CEMEE Foundation

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3