Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology

Author:

Palci Alessandro12ORCID,Seymour Roger S.3ORCID,Van Nguyen Cao4,Hutchinson Mark N.12,Lee Michael S. Y.12,Sanders Kate L.3ORCID

Affiliation:

1. College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia

2. South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia

3. School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia

4. Institute of Oceanography, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Abstract

Novel phenotypes are often linked to major ecological transitions during evolution. Here, we describe for the first time an unusual network of large blood vessels in the head of the sea snake Hydrophis cyanocinctus . MicroCT imaging and histology reveal an intricate modified cephalic vascular network (MCVN) that underlies a broad area of skin between the snout and the roof of the head. It is mostly composed of large veins and sinuses and converges posterodorsally into a large vein (sometimes paired) that penetrates the skull through the parietal bone. Endocranially, this blood vessel leads into the dorsal cerebral sinus, and from there, a pair of large veins depart ventrally to enter the brain. We compare the condition observed in H. cyanocinctus with that of other elapids and discuss the possible functions of this unusual vascular network. Sea snakes have low oxygen partial pressure in their arterial blood that facilitates cutaneous respiration, potentially limiting the availability of oxygen to the brain. We conclude that this novel vascular structure draining directly to the brain is a further elaboration of the sea snakes' cutaneous respiratory anatomy, the most likely function of which is to provide the brain with an additional supply of oxygen.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3