Comparative morphology of oral glands in snakes of the family Homalopsidae reveals substantial variation and additional independent origins of salt glands within Serpentes

Author:

de Oliveira Leonardo1ORCID,Gower David J.2,Wilkinson Mark2,Segall Marion2ORCID

Affiliation:

1. Laboratório de Toxinologia Aplicada, Center of Toxins, Immune‐Response and Cell Signaling (CeTICS) Instituto Butantan São Paulo Brazil

2. Natural History Museum London UK

Abstract

AbstractUsing diffusible iodine‐based contrast‐enhanced computed tomography (diceCT), we examined the morphology of the oral glands of 12 species of the family Homalopsidae. Snakes of this family exhibit substantial interspecific morphological variation in their oral glands. Particular variables are the venom glands, ranging from large (e.g., Subsessor bocourti) to small (e.g., Erpeton tentaculatum). The supra‐ and infralabial glands are more uniform in morphology, being the second most developed in almost all the sampled species. Premaxillary glands distinct from the supralabial glands were observed in five species (Myron richardsonii, Bitia hydroides, Cantoria violacea, Fordonia leucobalia, and Gerarda prevostiana), in addition to Cerberus rynchops, the only species in which this condition was previously documented associated with the excretion of salt. In the three species of the saltwater group of homalopsids (C. violacea, F. leucobalia, and G. prevostiana), the premaxillary glands also extend posteriorly, occupying a large area above the supralabial gland, a condition not observed in any other species of snake studied thus far. Character evolution analyses indicate that premaxillary glands differentiated from the supralabial gland and evolved independently three or four times in the family, always in lineages that invaded marine habitats. Our results suggest that the differentiated premaxillary glands are likely salt glands, as is the case in C. rynchops. If corroborated, this increases to six or seven the number of independent evolutionary origins of salt glands in snakes that have undergone an evolutionary transition to marine life.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3