Drag reduction and turbulent structure in two-dimensional channel flows

Author:

Abstract

A two-component laser velocimeter has been used to determine the effect of wall strain rate, polymer concentration and channel height upon the drag reduction and turbulent structure in fully developed, low concentration, two-dimensional channel flows. Water flows at equal wall shear stress and with Reynolds numbers from 14430 to 34640 were measured for comparison. Drag reduction levels clearly depended upon wall strain rate, polymer concentration and channel height independently.However, most of the turbulent structure depended only upon the level of drag reduction. The slope of the logarithmic law of the wall increased as drag reduction increased. Similarly, the root-mean-square of the fluctuations in the streamwise velocity increased while the r.m.s. of the fluctuations in the wall-normal velocity decreased with drag reduction. The production of the streamwise normal Reynolds stress and the Reynolds shear stress decreased in the drag-reduced flows. Therefore it appears that the polymer solutions inhibit the transfer of energy from the streamwise to the wall-normal velocity fluctuations. This could occur through inhibiting the newtonian transfer mechanism provided by the pressure-strain correlation. In six drag-reducing flows, the sum of the Reynolds stress and the mean viscous stress was equal to the total shear stress. However, for the combination of highest concentration (5 p.p.m.), smallest channel height (25 mm) and highest wall strain rate (4000 s - 1 ), the sum of the Reynolds and viscous stresses was substantially lower than the total stress indicating the presence of a strong non-newtonian effect. In all drag-reducing flows the correlation coefficient for uv decreased as the axes of principal stress for the Reynolds stress rotated toward the streamwise and wall-normal directions.

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3