Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole

Author:

Schroeder Robert P.1,Thole Karen A.1

Affiliation:

1. The Pennsylvania State University Department of Mechanical Engineering, , University Park, PA 16802

Abstract

Abstract Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30 deg with a 7 deg expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this newly shaped hole and found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5, at both low freestream turbulence and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.

Funder

Glenn Research Center

Publisher

ASME International

Subject

Mechanical Engineering

Reference42 articles.

1. A Review of Shaped Hole Turbine Film Cooling Technology;Bunker;ASME J. Heat Transfer-Trans. ASME,2005

2. Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall;Barigozzi;ASME J. Turbomach.,2006

3. Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes;Gritsch;ASME J. Turbomach.,2005

4. Effects of Hole Shape on Film Cooling With Large Angle Injection;Kohli,1999

5. Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes;Saumweber;ASME J. Turbomach.,2012

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3