Polarization effects in the diffraction of electromagnetic waves: the role of disclinations

Author:

Abstract

Three-dimensional diffraction patterns of monochromatic electromagnetic waves contain moving line singularities where the magnitude of the transverse field is zero, and its direction is therefore indeterminate. They are called disclinations, by analogy with the corresponding linear features in liquid crystals. A disclination in a vector wave is a natural generalization of a dislocation in a scalar wave. Where the scalar wave approximation in optics predicts a dislocation, or interference null, the full vector theory reveals a double helix structure: a disclination line in the electric field and another in the magnetic field winding around each other with a spacing of order (wavelength/2π). A perturbing plane wave causes this composite structure itself to become coiled. When there is a ‘polarization effect’ in the diffraction pattern a disclination in the electric field becomes a moving helix or, more generally, a coiled coil. As it moves it sweeps out a surface on which the polarization is everywhere linear. In optical experiments this observable surface is the most significant effect of disclinations. In general, however, the disclinations constitute elements of structure of the electromagnetic field, and their arrangement thus provides an effective way of describing the three-dimensional geometry of even very complicated diffraction fields, for example of microwaves.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference17 articles.

1. x <0. I t will be noted th at provided th a t kx = 0 the

2. a.

3. Berry M. V. 1978 J .Phys. A 11 27-37.

4. Berry M. V. 1981 In Physics of defects Les Houches Session X X X V 28 July-29 August 1980 (ed. R. Balian M. Kleman &J.-P. Poirier) pp. 453-543. Amsterdam New York Oxford: North Holland.

5. The elliptic umbilic diffraction catastrophe

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3