The elliptic umbilic diffraction catastrophe

Author:

Abstract

We have made a detailed theoretical and experimental study of the three-dimensional diffraction pattern decorating the geometrical-optics caustic surface whose form is the elliptic umbilic catastrophe in Thom’s classification. This caustic has three sheets joined along three parabolic cusped edges (‘ribs’) which touch at one singular point (the ‘focus’). Experimentally, the diffraction catastrophe was studied in light refracted by a water droplet 'lens’ with triangular perimeter, and photographed in sections perpendicular to the symmetry axis of the pattern. Theoretically, the pattern was represented by a diffraction integral E(x,y,z) , which was studied numerically through computer simulations and analytically by the method of stationary phase. Particular attention was concentrated on the ‘dislocation lines’ where | E | vanishes, since these can be considered as a skeleton on which the whole diffraction pattern is built. Within the region bounded by the caustic surface the interference of four rays produces hexagonal diffraction maxima stacked in space like the atoms of a distorted crystal with space group R3m. The dislocation lines not too close to the ribs form hexagonally puckered rings. On receding from the focus and approaching the ribs, these rings approach one another and eventually join to form ‘hairpins’, each arm of which is a tightly wound sheared helix that develops asymptotically into one of the dislocations of the cusp diffraction catastrophe previously studied by Pearcey. Outside the caustic there are also helical dislocation lines, this time formed by interference involving a complex ray. There is close agreement, down to the finest details, between observation, exact computation of E(x,y,z) , and the four-wave stationary-phase approximation.

Publisher

The Royal Society

Subject

General Engineering

Reference34 articles.

1. Abramowitz M. & Stegun I. A. (eds.) 1964 Handbook of mathematicalfunctions. New York: Dover.

2. Russ. math;Arnol'd V. I.;Survs,1975

3. Waves and Thom's theorem

4. Fine structure in caustic junctions

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3