Measurement of the viscosity of supercooled liquids at high shear rates with a Hopkinson torsion bar

Author:

Abstract

The Eyring theory of viscous flow suggests that lubricating oils should exhibit shear thinning when the shear stress exceeds about 5 MPa. The results of friction experiments in rolling-contact disc machines where very high pressures are generated in the lubricant film support this prediction, but are open to the criticism that the fluid is subjected to a high pressure for such a short time ( ca . 10 -4 s) that an equilibrium state may not be reached. In the present investigation the appropriate condition of the lubricant is achieved, not by subjecting it to very high pressures but by maintaining it in the supercooled state. The lubricant is thus in a condition of equili­brium and the shear experiments are carried out at atmospheric pressure. The lubricant specimen is retained in a suitably adapted split Hopkinson torsion bar, and at the high rates of shear applied ( ca . 10 4 s -1 ) the shear stress at sufficiently low temperatures can exceed 5 MPa. By this tech­nique the shear pulse is applied for a sufficiently short time ( ca . 10 -3 s) to avoid viscous heating of the sample, which bedevils normal viscometry at high shear rates. Two fluids were tested: polyphenyl ether 5P4E and a mineral oil Shell HVI 650. Nonlinearity in the shear-stress-shear-strain-rate relation was found when the stress exceeded about 3 MPa. The elastic shear modulus G was also measured, yielding ca . 500 MPa for 5P4E and ca . 50 MPa for HVI 650.These values compare with ca . 1100 MPa and 300 MPa as found by the high-frequency oscillating shear technique at small strains.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference10 articles.

1. Trans. A m . Soc. mech;Engrs F (J. Iubr. Technol.),1979

2. Proc;R. Soc. Lond. A,1967

3. Proc;Irv J .;R. Soc. Lond. A,1972

4. B risc o e B . J . & T a b o r D . 1978 J .Adhesion 9 145.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3