Abstract
Based on the modified Hopkinson torsion bar, a high-temperature dynamic shear test method was proposed for the Ti-1023 alloy, and the microstructural evolution of the tested material at different temperatures was studied. By using the modified high-temperature Hopkinson torsion bar, high-temperature testing within 1000 °C can be achieved. As the specimen-heating rate was fast, and the temperature gradient of the experimental environment was small, valid experimental data can be ensured during the experiment. The experimental results show that stress-induced martensite can significantly enhance the strength of the Ti-1023 alloy. Dynamically recrystallized grains similar to those in adiabatic shear bands appear in the microstructure of the Ti-1023 alloy after severe plastic deformation. Therefore, it is possible to regulate the content of stress-induced martensite in the microstructure to improve the mechanical properties of other alloys that are similar to β titanium alloys.
Funder
the National Nature Science Foundation of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献