Abstract
Numerical solution of the three-dimensional incompressible Navier-Stokes equations is used to study the instability of a flat-plate boundary layer in a manner analogous to the vibrating-ribbon experiments. Flow field structures are observed which are very similar to those found in the vibrating-ribbon experiment to which computational initial conditions have been matched. Stream wise periodicity is assumed in the simulation so that the evolution occurs in time, but the events that constitute the instability are so similar to the spatially occurring ones of the laboratory that it seems clear the physical processes involved are the same. A spectral and finite difference numerical algorithm is employed in the simulation.
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献